
AFRL-VA-WP-TP-2002-319
TRANSITIONING TO PC-BASED
SIMULATION-ONE PERSPECTIVE
Joseph Nalepka, Thomas Dube, Glenn Williams,
Adam Snyder, Thomas Danube, and G. Jeff Slutz

JUNE 2002

\
Approved for public release; distribution is unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AIR VEHICLES DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

20020828 153

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway Suite 1204 Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)

June 2002

2. REPORT TYPE

Preprint

3. DATES COVERED (From - To)

Final, 08/01/2001-05/01/2002
4. TITLE AND SUBTITLE

TRANSITIONING TO PC-BASED SIMULATION-ONE PERSPECTIVE

AUTHOR(S)

Joseph Nalepka, Thomas Dube, Glenn Williams and Adam Snyder
(AFRL/VACD)
Thomas Danube (L3 Communications)
G. JeffSlutz(Protobox)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Simulation and Assessment Branch (AFRL/VACD)
Control Sciences Division
Air Vehicles Directorate
Air Force Research Laboratory, Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7542

L3 Communications, Inc.

Protobox LLC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AIR VEHICLES DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

5a. CONTRACT NUMBER

In-house
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
N/A

5d. PROJECT NUMBER

232F
5e. TASK NUMBER

IH
5f. WORK UNIT NUMBER

PA
8. PERFORMING ORGANIZATION

REPORT NUMBER

AFRL-VA-WP-TP-2002-319

10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/VACD

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)
AFRL-VA-WP-TP-2002-319

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Conference paper to be published August 5, 2002 in Proceedings of AIM Modeling and Simulation Technologies
Conference. This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.

14. ABSTRACT

Doing "more for less" is a recurring theme facing researchers in many simulation facilities. In the area of simulation, one
way to reduce operational costs is to invest in and operate inexpensive simulation computer systems. Traditionally, this
has not been possible because very specialized computer systems were required to build simulation architectures that
provided a deterministic timing mechanism and also assured that simulation processes executed in a predetermined order
throughout the entire execution period of the simulation. However, with the advent of 2.0 GHz processors, powerful
graphics cards, and the wide availability of software, the personal computer (PC) is now becoming a realistic option for
developing real-time simulation architectures. Air Force Research Laboratory (AFRL) researchers at the Aerospace
Vehicle Technology Assessment and Simulation (AVTAS) Laboratory have integrated and tested a simple, PC-based,
real-time simulation framework that executes under the Linux operating system. Using various hardware- and software-
based timing mechanisms, along with nonspecialized software tools, the AVTAS Laboratory has developed a real-time
simulation architecture that will enable the execution of simulation experiments on dual-CPU and quad-CPU PCs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF
ABSTRACT:

SAR

18. NUMBER OF
PAGES

14

19a. NAME OF RESPONSIBLE PERSON (Monitor)
Joseph Nalepka

19b. TELEPHONE NUMBER (Include Area Code)
(937) 904-6547

HES&S 31-15093-1

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

AIAA-2002-4863

TRANSITIONING TO PC-BASED SIMULATION - ONE PERSPECTIVE

Joseph Nalepka, Thomas Dube, Lt, USAF, Glenn Williams, Adam Snyder
Air Force Research Laboratory

Thomas Danube
L3 Communications, Inc.

G. Jeff Slutz
Protobox LLC

ABSTRACT
Doing "more for less" is a recurring theme facing
researchers in many simulation facilities. In the
area of simulation, one way to reduce operational
costs is to invest in and operate inexpensive simu-
lation computer systems. Traditionally, this has
not been possible because very specialized com-
puter systems were required to build simulation
architectures that provided a deterministic timing
mechanism and also assured that simulation
processes executed in a predetermined order
throughout the entire execution period of the simu-
lation. However, with the advent of 2.0 GHz proc-
essors, powerful graphics cards and the wide
availability of software, the Personal Computer
(PC) is now becoming a realistic option for devel-
oping real-time simulation architectures. Air Force
Research Laboratory (AFRL) researchers at the
Aerospace Vehicle Technology Assessment and
Simulation (AVTAS) Laboratory have integrated
and tested a simple, PC-based, real-time simula-
tion framework that executes under the Linux op-
erating system. Using various hardware and soft-
ware-based timing mechanisms, along with non-
specialized software tools, the AVTAS Laboratory
has developed a real-time simulation architecture
that will enable the execution of simulation ex-
periments on dual-CPU and quad-CPU PCs.

This paper is declared a work of the U.S. Govern-
ment and is not subject to copyright protection in
the United States.

INTRODUCTION
One of the challenges in today's laboratory envi-
ronment is trying to do more work with fewer re-
sources. These resources include people, money,
and simulation hardware to name a few. Tradi-
tionally, simulation engineers were required to
purchase and integrate very specialized and ven-
dor specific computer systems into their simulation
facilities. The primary reason for this is that these
computer systems were developed specifically for
real-time applications and were able to provide the
accurate timing mechanisms that were necessary
for synchronizing time critical simulation proc-
esses.

Although specialized computing systems are ex-
cellent for providing a deterministic timing source
and real-time architecture, they do come with sev-
eral drawbacks. The first and most obvious draw-
back is cost. These specialized computer systems
tend to have very unique architectures and operat-
ing characteristics that cause their costs to be sig-
nificantly more than other "conventional" computer
systems. Second, because these are specialized
computer systems, many of the hardware and
software components used with these machines
are only developed and maintained by the vendor.
Consequently, the user, in most cases, is required
to purchase a maintenance agreement with the
vendor that will cover service, repairs, and up-
dates to both the computer hardware and soft-
ware. Third, in some cases, the operating system
for these computer systems is unique and thus a
significant "learning curve" must be overcome in
order to understand and utilize the system prop-
erly. Fourth, many software development and
troubleshooting tools are not compatible with
these specialized computer systems. Conse-
quently, a facility must resort to purchasing these
tools from the vendor at a large cost or develop
these tools on their own. Finally, because of the
specialized architecture, many of the simulation
software models have to be modified, compiled, or

1
American Institute of Aeronautics and Astronautics

flv? 02-123!

run in a manner that takes advantage of the real-
time operating features of the computer system.
The unfortunate result of these modifications is
that many simple software modules become com-
plicated and less portable to other real-time com-
puter systems.

Although specialized real-time computer systems
have been the status quo for simulation, they are
now receiving stiff competition from another com-
putation platform: the Personal Computer (PC).
There are several reasons for this new competi-
tion. First, with processor speeds now approach-
ing the 2 GHz plateau, PCs now have the ability to
execute the most complicated and computationally
demanding software models very quickly. Sec-
ond, PCs are relatively inexpensive when com-
pared to specialized real-time computer systems.
Third, an enormous amount of software is widely
available for PCs, some of which can be obtained
for little or no cost from the Internet or other
"shareware" sources. Fourth, with the current ad-
vances in graphics card technology, PCs are be-
coming more and more capable of rendering very
complex graphical images and scenes. Finally,
because there are many PCs in use today, it is
very easy to find a vendor that can troubleshoot
and repair various hardware and software prob-
lems without the need for purchasing a hardware
or software maintenance agreement from the
computer manufacturer itself.

One of the major drawbacks of using PCs for real-
time simulation is their inability to provide a deter-
ministic timing source or to guarantee execution
order for the simulation processes. Researchers
in the Aerospace Vehicle Technology Assessment
and Simulation (AVTAS) Laboratory at the Air
Force Research Laboratory (AFRL) are address-
ing this drawback and have successfully imple-
mented a PC-based, real-time simulation architec-
ture using the Linux operating system. The pur-
pose of this paper is to quickly review previous
results and then present the current research find-
ings concerning the use of Linux for real-time
simulation architectures.

REAL-TIME SYNCHRONIZATION
One of the most critical features of PC-based,
real-time, simulation architectures is the ability to
utilize an accurate or "deterministic" timing source.
A deterministic timing source is one in which a
particular simulation frequency or frame rate is
maintained throughout the entire execution phase
of the simulation, regardless of the activity that
may be occurring on the computer system. This

type of real-time performance is necessary when
there is a desire to minimize latency within a simu-
lation or when simulation specific models are re-
quired to update at a specific and constant rate.

Before proceeding with the latest results and inno-
vations for deterministic timing under Linux, it is
first necessary to summarize previous results. For
the AVTAS Laboratory, and as described in detail
in Reference 1, it was necessary to have a simula-
tion architecture that could provide deterministic
timing to within one millisecond of the desired
simulation frequency. The first approach taken for
achieving this requirement was to use a set of In-
stitute of Electrical and Electronics Engineers
(IEEE) software standards called POSIX. Within
POSIX, there exists a timing mechanism called the
interval timer that provides the simulation engineer
with a software-based, programmable timing
source. This timer is a counter that is decre-
mented after each computer clock tick. The initial
value of this timer is based upon the user specified
update frequency. When this counter reaches
zero, the timer is said to "expire" and a signal is
sent to a process that is waiting to capture this
signal. The timer is then automatically reset and
the countdown to the next interval begins.2

Interval Timer 100 Hz Timing Test (Noisy System)

':jj ,.-■;.. : *'■'■;■• ■ '
-- ■ - -—- [~_ " ~

■g 0.020 \

| 0015

| 0010

■I O0O5-

0000'

:. ...I j« «a.ill li.^jjLi! Uill.Jills!
■.innmiiHii

l'Z~ ~~Zl 7:']"l '" '

2000 «BO 6000 BODO 10000 12000 14003

Frame Number

Figure 1 - Single-Processor POSIX Timing Test
(Noisy System)

Unfortunately, it was discovered that the POSIX
interval timer was easily influenced by background
system activity1. Figure 1 and Figure 2 show tim-
ing results for the POSIX based interval timer on
both a "noisy" single-CPU and "noisy" quad-CPU
computer system. A noisy computer system is
one in which various system activities such as disk
searching, software compilation, mouse move-
ment, and various window operations are occur-
ring in order to evaluate the timer under very de-
manding system conditions. What these timing
results show is that there is considerable variation
in the timing mechanism for a 100 Hz simulation
frequency, even on a system that has 4 CPUs

American Institute of Aeronautics and Astronautics

available for data processing. From these results,
it was concluded that the POSIX interval timer
(under Linux) would not be an acceptable timing
source for the AVTAS Laboratory real-time simula-
tion architecture.

Interval Timer 100 Hz Timing Test (Noisy System)

0.035

.0.030

; 0025

; 0020

• 0.015

; 0.010

; 0.035

0000

il||i||p t •
x^ä^Jtr^ü^-^M

.-v-■■; ;'■.-*. ■■...;. v. v;- .>:.;■--■;'■-. .■■■.■!

■■'•■■■. ■ ■■■■' '•■" i

* $ *"-«',■ ■ .-v.. ... ■% j

. '•>• .'., ,■ ■-. 1 ■ ■ '■'■■' i'-" 1
frv-':.'"''. [ffitö8ä$ • ■ •-•.- -1
- , . • - 1 J

 H 1 ■—1 1— 1

10D0 2000 3000

Frame Number

5000

:igure 2 - Quad-Processor POSIX Timing Test
(Noisy System)

One thing that should be noted is that the POSIX
interval timer is an example of a "non-polling"
timer. A non-polling timer allows the calling proc-
ess to "sleep" and thus yield the processor to an-
other process, while the calling process waits for
an alarm signal from the operating system. The
greatest advantage to this type of timer is that the
processor can be used for other processing and
the calling process can be "woken up" at the ap-
propriate time. However, research at the AVTAS
Laboratory has yielded some surprising results
from "polling" timers, which constantly sample a
variable or memory address until it reaches a
specified value.

SCRAMNet 100 Hz Timing Test (Noisy System)

0.0106

~ 0.0104
o
S. 0.0102 Ipl

■= 0.0100

• 0 0098

| 0.0096

0.0094

«»»•*!7'.«»»>.*«,'*.'{»l,'n««.<^«fc.T»V"^«

4mMS\\

2000 4000 6000

Frame Number

8000 10000

:igure 3 - Quad-Processor SCRAMNet Timing
Test (Noisy System)

The second approach that was taken by AFRL
researchers for simulation timing was a hardware-
based, polling timer solution: SCRAMNet. Typi-
cally, for simulation experiments, SCRAMNet is
used as a shared memory extension to allow dif-
ferent simulation computers to share simulation
data. However, an additional feature of SCRAM-

Net is its user-programmable timer that has a
resolution of 1.706 microseconds. Figure 3 shows
a timing diagram that validates the utility of
SCRAMNet as a simulation timing mechanism.
Even under noisy computer system conditions,
fluctuations of the SCRAMNet based timer were
well within the one-millisecond resolution specifi-
cation for the AVTAS Laboratory simulation archi-
tecture. From these results, it was concluded that
the SCRAMNet timer would be an acceptable tim-
ing source for the AVTAS Laboratory real-time
simulation architecture.

Digital PCI I/O Board 100 Hz Timing Test (Noisy System)

0.0104 4—, ... :

nmrnmrnsm
:. i, ._•: •;." i.

»00 4O0O «MO WOO 10000 12000 14000 «000 1W0O 20000
Frame Number

:igure 4 - Dual Processor PC I/O Timing Test
(Noisy System)

Although SCRAMNet was demonstrated to be a
very reliable timing mechanism, its unfortunate
drawback is that it can cost more than the PC itself
(nearly $6000). Consequently, this makes
SCRAMNet a very expensive acquisition, espe-
cially if one is only considering using it as a simu-
lation timing mechanism. As a result, AFRL re-
searchers began exploring two alternative solu-
tions for simulation timing. The first solution was a
hardware-based implementation that,was signifi-
cantly less expensive than a SCRAMNet board
(less than $100). This implementation was a 24-
Channel, PCI Digital I/O Board with programmable
timer (2 microsecond resolution) that can be used
as both a polling and non-polling timer. As was
done in previous experiments, timing measure-
ments were also made using this I/O Board.
These measurements were done on a dual-CPU,
1.0 GHz PC with 1 GB of RAM at a timing fre-
quency of 100 Hz under noisy computer system
conditions. Although not presented here, when
this board was used as a non-polling timer, the
performance was not acceptable. When used as
a polling timer, however, it functioned very much
like the SCRAMNet timer. These results are
shown in Figure 4. From these results, it is seen
that this timer is well within the one-millisecond
resolution specification for the AVTAS Laboratory

American Institute of Aeronautics and Astronautics

Simulation architecture. Consequently, it was con-
cluded that the Digital I/O Board would be an ac-
ceptable timing source for the AVTAS Laboratory
real-time simulation architecture provided it was
used in a polling mode only.

The second alternative solution that was explored
was a "purer" software-based, polling timer solu-
tion. This software solution uses a standard Linux
utility called gettimeofday. The purpose of this
utility is to retrieve the time since Epoch, or, in
more common terms, the time in seconds and mi-
croseconds since 1 January 19703. This timer is
implemented by first using gettimeofday at the
start of a simulation frame to get a reference time
for the frame. The simulation software continually
reads or "polls" the system clock using gettimeof-
day until it is time for the next simulation frame to
begin. Before the next frame is started, the frame
reference time is incremented by the absolute
simulation frame period and the countdown until
the start of the next simulation frame is begun us-
ing this new reference frame time.

•n*4 IWUHIlMl km)
<

(
III** • *.
piiml - >*•*•!-! (l Mm)
Wllllllll |*»». *»»;

M«| •• (•.•«•^ir»» «i

<■—_«■» <M *» «»M »«• *i» <»» w «vMs* —•*

W1IWMM IM«. *•«».

«Ml* tN>Ml a*r*e>ll
tHJ<Mi«*tWMI t>|.

»«iniillW «»»». Mil:
•» - «IllJllll >• W^M. « ||

if ..» _ . .

-~ t. ir_jiii m—i t>

Figure 5 - Implementation of the "gettimeofday"
Timing Mechanism

The main reason for incrementing time based on
the absolute simulation frame period is to minimize
the long-term timing errors of the simulation. Be-
cause of round off and other numerical precision
errors, the frame period, when measured "abso-
lutely" using gettimeofday, may vary slightly be-
tween two successive frames. However, these
small errors between simulation frame times will
become additive and result in a very large timing
error at the end of the simulation. By adding the
absolute frame period to the previous reference
time, it is guaranteed that the long-term simulation
timing error is reduced to the error as measured
between the last two simulation frames, which is

very small. An example of the gettimeofday poll-
ing timer implementation is shown in Figure 5.

Timing measurements were conducted on this
timing implementation using a dual-CPU, 1.0 GHz
PC with 1 GB of RAM at a timing frequency of 100
Hz under noisy computer system conditions. The
results of these measurements are shown in Fig-
ure 6. Despite being a software-based timer,
these results show surprisingly good accuracy in
maintaining the desired simulation frequency. As
expected, additional computer system activity had
an influence on the accuracy of this timer, but sur-
prisingly it performed only slightly worse than ei-
ther of the "hardware-based" implementations.
This reduced performance still produced a simula-
tion frequency that was well within the one-
millisecond resolution specification for the AVTAS
Laboratory. As a result, it was concluded that this
timing mechanism would also be an acceptable
timing source for the AVTAS Laboratory real-time
simulation architecture.

Dual Processor "gettimeofday" 100 Hz Timing Test
(Noisy System)

Figure 6 - Dual Processor "gettimeofday" Timing
Test (Noisy System)

What has been demonstrated thus far is that there
are several alternatives available for simulation
timing if small amounts of variation are tolerable
with the timing mechanism itself. For a low cost
solution, both the software-based timer using the
gettimeofday function and the Digital I/O Board
provide an excellent solution. However, if it is
necessary to share data amongst different com-
puter systems, the SCRAMNet solution, although
more expensive, is able to provide the simulation
with not only a shared memory mechanism be-
tween the computer systems but also a very reli-
able timing source. The lesson to be learned from
these timing experiments is that there are a num-
ber of simulation timing solutions available for a
simulation when utilizing the Linux operating sys-
tem. However, the choice of timing mechanism for
a particular real-time architecture will be based on

American Institute of Aeronautics and Astronautics

the timer's resolution requirements, the amount of
acceptable variation in the timing source from the
desired frame rate, and the cost constraints of the
simulation facility.

REAL-TIME ARCHITECTURE DESIGN
A key component of any real-time simulation archi-
tecture is the ability to control those processes that
are running within this architecture. For instance,
a requirement of the AVTAS Laboratory real-time
architecture is the ability to execute simulation
processes in a specific order at a specific simula-
tion rate. In the case when multiple CPUs are re-
quired, it is necessary for these simulation proc-
esses to execute in parallel to one another to as-
sure maximum computational efficiency. A
graphical representation of this design philosophy
is shown in Figure 7. In this figure, each bar
represents a real-time process and the length of
each bar represents the amount of time required
by the real-time process to execute within a simu-
lation frame.

Reaffirm JtadMta&ivv

^P**^Ut ™^m%t

N^MH*-4>
CPU C**J

I mtftux*

«Mi
Figure 7 - Real-time Architecture Design Philoso-

phy

One of the problems with this approach, however,
is that it is not completely supported under POSIX.
With POSIX, the user has the ability to assign an
execution priority to a process in order to control
execution order, however, it does not provide a
mechanism for assigning processes to a specific
processor. Consequently, the operating system
decides which CPU will run a real-time simulation
process based on CPU availability at a given in-
stant of time. Because the POSIX standard did
not provide a mechanism for achieving this, an
alternative solution, developed by Tim Hockin,
(http://isunix.it.ilstu.edu/~thockin/pset) was imple-
mented. The purpose of these utilities, called
PSET, is to enable the user to assign a process to
a specific processor, restrict a processor's ability
to execute processes, restrict a processor from

running at all, and get information about a proces-
sor's execution state. Use of these utilities simply
involves patching them into the Linux kernel and
then rebuilding the kernel itself.

At the time of its implementation into the AVTAS
Laboratory in 2001, this simple operating system
patch along with the POSIX standards enabled
AFRL researchers to create a real-time, concur-
rent processing simulation architecture. Unfortu-
nately, this implementation had two major draw-
backs. First, because this implementation re-
quires the use of specialized function calls within
the real-time simulation architecture (as a result of
the PSET utilities), this architecture itself became
less portable between PCs. Although this problem
is easily resolved by installing the patch onto all
PCs within the AVTAS Laboratory, it is still a level
of effort that should not be required. Second, and
probably most bothersome, is that the PSET utili-
ties themselves are not very portable between dif-
ferent versions of the Linux Kernel. The initial de-
velopment of the PC-based architecture within the
AVTAS Laboratory was done under Linux Kernel
Version 2.2. As new computers and new com-
puter hardware were acquired for the AVTAS
Laboratory, it became necessary to upgrade to
Linux Kernel Version 2.4. An unfortunate artifact
of this upgrade was that the PSET utilities, written
for Linux Kernel Version 2.2, no longer operated
properly. In order to fix this problem, it was nec-
essary for AFRL researchers to become familiar
with the Linux Kernel software itself in order to
modify the PSET utilities for proper operation un-
der this newer version of the Linux Kernel. Al-
though this is not an impossible task, the idea of
having to perform this same exercise for future
Linux Kernel releases made this a very undesir-1

able and high maintenance task for AFRL re-
searchers. Consequently, ah alternative solution
was sought for creating the real-time, concurrent
processing simulation architecture.

For AFRL researchers, the ideal approach to de-
veloping the real-time architecture was to elimi-
nate any reliance on "specialized" software for the
simulation architecture. For this reason the
POSIX based solution was utilized. This approach
provided a mechanism for controlling the execu-
tion order of simulation processes (by enabling the
assignment of an execution priority to a simulation
process), however, it did not guarantee which
processor would be utilized during execution. The
question asked by AFRL researchers at this point
was: Is locking a process to a specific processor
critical for a real-time architecture?

American Institute of Aeronautics and Astronautics

There are many arguments that can be presented
to justify why a real-time simulation process
should or should not be locked to a specific com-
puter processor. One such answer in favor of this
approach is that you minimize the amount of lost
processing time in a given simulation frame as a
result of a process switching between processors
during execution. However, the counter argument
is that the amount of time lost as a result of this
"switching" is on the order of microseconds and
that unless you are using nearly all of your simula-
tion frame for executing simulation processes, this
switching time will be insignificant and not result in
overruns in the simulation frame time.

Still another argument in favor of locking a process
is that you guarantee that the only thing that will
be executing on a specific processor will be the
real-time process itself. This is important because
it is undesirable to have non-real-time processes,
such as those related to compiling or other operat-
ing system activity, interfering with or taking away
from the overall simulation frame time. The
counter argument to this, however, is that if the
execution priority of a real-time process is higher
than the execution priority of the non-real-time
processes, the real-time processes will have the
priority for execution and will not be preempted by
the non-real-time processes. This last point, how-
ever, assumes that you have at least one proces-
sor available for operating system activities. Oth-
erwise, the inability to execute operating system
processes will have an adverse affect on the over-
all operation of the computer system itself. It is for
this reason that the AVTAS Laboratory simulation
architecture requires at least a dual-CPU com-
puter system (one processor for operating system
activity and one for the real-time processes)1.

Upon review of the AVTAS Laboratory real-time
architecture requirements, AFRL researchers
came to the conclusion that the ability to control
the order of execution of processes far outweighed
the requirement for executing simulation proc-
esses on a specific processor. The rationale for
this decision is that as long as all simulation proc-
esses finish within the allotted simulation frame
time and that they execute in the desired order, it
does not matter if a specific simulation process
executes on a different CPU from one simulation
frame interval to the next. As was previously men-
tioned, POSIX already provides a mechanism for
assigning real-time processes a higher execution
priority over non-real-time processes. Conse-
quently, the only remaining challenge was to im-
plement a mechanism for controlling the order of

execution of the real-time processes. The imple-
mentation that was adopted was to utilize a stan-
dard operating system feature called semaphores.

In basic terms, a semaphore is a location in mem-
ory, which is visible to all processes and whose
value can be tested and set with a single instruc-
tion. The test and set operation is, as far as each
process is concerned, uninterruptible and once
started, nothing can stop it. Depending on the
result of the test and set operation, one process
may have to sleep until the semaphore's value is
changed by another process4. The values that are
tested can be positive or negative, but, typically,
are usually either 0 or 1.

The best way to explain the functionality of sema-
phores is through an example:

Let's say you had two processes, both of
whose job was to read and write data to a data
file, but only one process can have the file
open at a time. It is easiest to think of the re-
source as actually, being the semaphore. A
value of 1 means the resource is available, and
a value of 0 means the resource is unavailable.
At the start of execution, the value of the
semaphore (the resource) is initialized to 1 to
indicate that it is available. The first process
tests the "resource" to see if it's available.
Since the value is 1, the first process immedi-
ately decrements the semaphore by 1. Now
the value of the semaphore is 0, which in effect
"locks" the data file to every process except the
first process. When the second process tries
to test the semaphore, it will see the value is 0,
which indicates the resource is unavailable,
therefore the operating system will place the
second process in the wait queue to wait until

.. the resource becomes available again. It is
important to note that second process is no
longer a running process, but it is a "sleeping"
process. Meanwhile, the first process finishes
with the data file. The first process will then in-
crement the semaphore value (making the
value 1) to indicate that the resource is avail-
able again. The operating system will wake the
second process up, because the resource is
available again (i.e., the semaphore's value
becomes greater than or equal to 1). This will
continue, thus enabling each process to access
the data file one process at a time4.

Before explaining how semaphores were incorpo-
rated into the real-time simulation architecture, it is
first important to define a new concept developed
by AFRL researchers. As a means of identifying

American Institute of Aeronautics and Astronautics

sets of simulation processes that must follow one
another in their order of execution, the term "Fam-
ily" was established. Again, this can be best ex-
plained by an example:

Referring to Figure 7, Family 1 would consist of
Process 1 and Process 2 because Process 2
can only run after Process 1 has completed.
Likewise, Family 2 would consist of Process 3,
Process 4, and Process 5. Finally, Family 3
would consist of only Process 6. It is the job of
the new semaphore scheme to assure that the
order of execution within a Family is main-
tained. In other words, the job of the sema-
phores, in the case of Family 2, is to assure
that Process 4 does not run until Process 3 is
finished and, likewise, to assure Process 5
does not run until Process 4 is finished. Be-
cause the order of process execution is only
defined within a particular Family, the order of
execution in one Family has no affect on any of
the other Families. For example, again refer-
ring to Figure 7, the order of execution and the
time when processes start in Family 1 and
Family 3 has no influence on the processes in
Family 2.

In order to implement the Family concept using
semaphores, three different types of semaphores
had to be created: Frame Start, Frame End, and
Family. The purpose of each type is as follows:

Frame Start: An array of semaphore elements
with each element corresponding to a Family.
This semaphore array is used to simultane-
ously start the first family member in each fam-
ily. This is analogous to a green traffic light;
the time when the light turns green signifies the
beginning of the frame.
Family: An array of "n" semaphore ejements
with each element corresponding to a specific
process (family member) within a Family. Each
element can take on a value of 0 or 1, with 0
indicating that the family member is not free to
execute and 1 indicating that a family member
is free to execute. Only one element within this
n-element array will have a value of 1, indicat-
ing that only one family member within a Fam-
ily is free to execute at any given time. Ele-
ments change state from 0 to 1 starting from
the first element of the array and proceeding to
the n"1 element of the array. This is analogous
to standard, single lane traffic flow at a green
light.
Frame End: An array of semaphore elements
with each element corresponding to a Family.
Each array element can take on a value of 0 or

1, with 1 indicating that all family members
within the Family are done executing and 0 in-
dicating that all family members within the
Family have not yet finished executing. This
operation is analogous to a yellow traffic light,
when the first Family finishes execution, and
also to a red traffic light, when all Families have
finished execution. When the "light" turns red,
the timer checks to see how much time is re-
maining until the end of the frame and takes
any appropriate actions such as reporting
simulation frame overruns.

It should be noted that the concept of a Family
now replaces the notion of a CPU, as was shown
in Figure 7. In this Figure, all processes were ex-
pected to run in the same order on the same CPU.
With the concept of a Family, the order of execu-
tion is maintained but the processor in which exe-
cution takes place may be different. This will be
explained in more detail later.

The best way to illustrate the use of this sema-
phore scheme and the concept of a Family is
through a graphical example, shown in Figure 8.
This figure shows a "snapshot" of execution time
within a given simulation frame (denoted by the
"Current Time" arrow to the left of the diagram).
An initial observation is that all of the Families
have begun execution. We know this is true be-
cause all elements of the Frame Start semaphore
are 0. When the frame was started, they were all
set to 1, but they were immediately decremented
to 0 by the first family member of each Family.
We can also observe that Family 1 has finished
executing because its corresponding element in
the Frame End semaphore is a 1. Neither Family
2 nor Family 3 has completed its execution yet
because their respective elements of the Frame
End semaphore array are both 0. Also notice in
Family 2 that Process 5 is now permitted to run,
because its respective element in the Family 2
semaphore array is a 1 and there can be no more
than one family member per Family permitted to
run at one time. The same is true with Process 8
in Family 3.

As previously mentioned, the idea of a Family now
replaces the conceptual idea of running and lock-
ing processes to specific processors. Because the
PSET utilities are not being utilized, and POSIX
does not support processor locking, this new simu-
lation architecture will only guarantee order of
execution and not the processor upon which a
simulation process will be executing. The proces-
sor that is used and which processes are affected

American Institute of Aeronautics and Astronautics

is strictly up to the scheduling mechanism within
Linux. In addition, the processor upon which
frame to the next. It is for this reason that one
more CPU than simulation Family is required on a
simulation computer.

Semaphore ttedgn
Phitoftophy

UM«

|T^y#Bl«iiwy

Mtofnm«
Tim»

FnwEnd|7]Yfol Family »loWl

Figure 8 - Architecture Implementation Using
Semaphores

FUTURE ENHANCEMENTS
Currently, the AVTAS Laboratory's real-time archi-
tecture has been integrated and tested on both
dual-CPU and quad-CPU PCs. For many applica-
tions, limiting the simulation execution to one PC
is not a problem. However, for more complex
simulations with a high computational demand,
one PC may not be adequate and thus additional
PCs may be necessary to augment the demand
for more "number crunching" capability. In addi-
tion, many facilities, including the AVTAS Labora-
tory, have computer systems that are dirrerent
from the PC that can be used for real-time simula-
tions. Consequently, the next step in the evolution
of this simulation architecture is to extend the cur-
rent implementation to work across multiple com-
puter systems and thus create a parallel comput-
ing architecture. When this advanced design is
implemented, it will provide AFRL researchers with
a more flexible and resource efficient mechanism
for designing and conducting real-time simulation
experiments.

these tasks execute can vary from one simulation

provides an accurate, real-time, deterministic up-
date frequency, but is also independent on any
specialized software or operating system
"patches." Through the use of the POSIX stan-
dard, operating system semaphores, and various
hardware or software based timing mechanisms,
AFRL researchers were able to create a determi-
nistic, real-time simulation architecture that guar-
antees the order in which simulation processes
execute through a newly developed concept called
a "Family." Although this architecture makes no
guarantees as to which processor a particular
simulation process will execute, testing within the
AVTAS Laboratory has demonstrated that proces-
sor "swapping" does not have a significant impact
on the overall performance of the simulation.
Consequently, as this real-time architecture is ex-
tended to run with more than one computer sys-
tem, the end result for AFRL researchers will be a
low cost and efficient alternative to developing and
executing real-time, deterministic simulations.

REFERENCES
1. Nalepka, Joseph, et al., "Real-Time Simulation

Using Linux," AIAA 2001-4185, 2001 AIAA
Modeling and Simulation Technologies Con-
ference, Montreal, Quebec.

2. Gallmeister, Bill O., "POSIX.4: Programming
for the Real World," O'Reilly and Associates,
Inc., 1995.

3. Pate, Steve D., "UNIX Internals: A Practical
Approach," Addison-Wesley, 1996.

4. Rusting, David A., "The Linux Kernel," David
: Rushng, 1999.

CONCLUSIONS
Researchers at the Air Force Research Laboratory
have implemented a simulation architecture that
will execute on a Personal Computer using the
Linux operating system. This architecture not only

8
American Institute of Aeronautics and Astronautics

